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Buoyancy-driven mean flow in a long channel
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Convection plays a major role in a variety of natural hydrodynamic systems. Those
in which convection drives exchange flows through a lateral contraction and/or over
a sill form a special class with typical examples being the Red and Mediterranean
Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work
focuses on the spatial distribution and scaling of the density difference between the
inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with
buoyancy sources at its upper surface, experiments were conducted to investigate the
influence of the geometry of the strait and the channel as well as the magnitude of
the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by
Maxworthy (1994, 1997) were compared with the experimental results. It has been

shown that a scaling law for which g′ = k B
2/3
0 x/h4/3 best describes the distribution

of the observed density difference along the channel, where B0 is the buoyancy flux, x
the distance from the closed end of the channel, h its height at the open end (sill) and
k a constant that depends on the details of the channel geometry and flow conditions.
This result holds for the experimental results and appears to be valid for a number
of natural systems as well.

1. Introduction
In partially enclosed water bodies like the Red and Mediterranean Seas, the fjords

that indent many coastlines, etc., the mean fluid motion is driven by buoyancy
differences that are induced by convective motion. Usually a rather small strait
connects the open ocean to the partially enclosed sea. Due to the generally observed
density difference between the two water bodies an exchange flow is established
through the strait. Within the partially enclosed body of fluid a continuous buoyancy
flux replenishes the exchange flow through the strait. This buoyancy flux can be due
to evaporation, cooling or freezing at the surface. The magnitude of the buoyancy
flux is, in general, difficult to calculate. Also a wide variety of natural causes can
disturb the system, for example strong surface winds or localized cooling or heating.

In laboratory experiments, on the other hand, it is rather easy to control the
geometry and the buoyancy forcing of the experimental apparatus and change many
of the parameters at will. Here we report on experiments in a channel that was built
to study such flows. A better understanding is sought of the combined effect of the
buoyancy forcing, the geometry of the enclosed water body itself and the geometry
of the sea strait on the flow pattern inside the channel and through the strait. The
results from the experiments are then compared with natural systems.

First the literature of this problem is reviewed along with the underlying theory.
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Following this, the experimental apparatus is presented, the experimental procedures
and the results of the experiments are discussed; finally comparisons are made with
natural systems.

1.1. Literature

In general the literature concerning the subject presented in this work can be divided
into two groups: on one hand, publications that deal with the circulation and motion
of the fluid in the partially enclosed water body itself; on the other, questions that
arise concerning the controlling mechanisms of the connecting strait between two
reservoirs of different fluid densities.

The seminal work on convection and circulation in partially enclosed water bodies
was published by Phillips (1966). Here basic expressions were found for the velocity
and buoyancy distribution, and the results were compared with field data from the
Red Sea, collected by Neumann & McGill (1961). This model will be discussed more
thoroughly in the next section. Refinements of the Phillips’ model were presented
by Garrett, Speer & Tragou (1995) and Tragou & Garrett (1995), for example, by
incorporating viscous and conductive effects. Some experimental studies were also
conducted also Brocard, Jirka & Harleman (1977)

The influence of a strait on flows of this type was investigated by Stommel &
Farmer (1953). Here for the first time the expression overmixed was used for an
exchange flow through a strait when a minimum density difference existed between
the fluid layers in the strait while the exchange flow through the strait was maximal.
In this state additional mixing inside the reservoir had no further effect on lowering
the density difference or increasing the amount of exchanged fluid. A more complete
discussion of this flow state will be found in § 2.1.1. Theoretical studies of the effects
of straits were performed by Armi (1986), Farmer & Armi (1986), Armi & Farmer
(1986) and compared with the flow through the Strait of Gibraltar. Different strait
geometries were considered, for example lateral contractions with and without a sill
and the effect of a barotropic net flux through the strait. A good review can be found
in Lawrence (1990), where the different methods of defining critical flow conditions
are discussed and related to one another.

A first attempt to inter-relate the flows in the region of convectively driven mean
flows (called the channel in what follows) and the specifics of the flow through the strait
is to be found in Maxworthy (1994, 1997). Here the relationship between the buoyancy
and interfacial forces acting on the fluid body in the enclosed reservoir and the control
state of the flow through the strait was considered. This model is fundamental to
the present work and will be discussed in depth in the following section. Based on
this approach experiments were carried out by Grimm & Maxworthy (1996) and
Grimm (1998). In these works it was first shown that a theory that combines the
flow properties in the strait with those in the channel can describe the types of flows
investigated in experiments and seems to be valid for a number of natural systems as
well.

2. Remarks on the underlying theory
2.1. Critical flow condition

Throughout this work the concept of an internally hydraulically critical flow is
fundamental, especially in the application to two-layer flows, which are usually
observed in sea straits or estuaries where two reservoirs of different fluid densities
are connected. The flow is critical, in a continuous transition from subcritical to
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supercritical conditions, at the location where the area is a minimum, and the local
Froude number (see below) is unity, cf. the concept of a critical Mach number in
gas dynamics. An introduction to this concept can be found in Henderson (1966), for
example.

Further hydraulic assumptions must be made for the flows considered here. These
assumptions are that the fluid is considered to be inviscid, the pressure hydrostatic
everywhere in the flow and the velocity and density of each layer constant at a fixed
axial location, x. Changes of these properties only take place in the direction of the
flow. Additionally the flow is assumed to be Boussinesq, meaning changes in density
are only considered in calculating buoyancy effects.

In order to determine the location where the flow becomes critical, a suitable
Froude number must be calculated, and the flow is considered to be critical when this
Froude number is unity. For two-layer flows a composite Froude number, usually
designated as G, is the appropriate quantity to consider. This is derived from the
Froude numbers, Fri, of each individual fluid layer, where

Fr2
i =

u2
i

g′yi
; (2.1)

here ui is the fluid velocity in the x-direction in the strait, yi is the layer thickness
there, and g′ is the reduced gravity based on the density difference between the layers,
so that g′ = g(ρ2 − ρ1)/ρ2, where the indexes 1 and 2 represent the upper and lower
fluid layer respectively, g is the gravitational constant and ρi is the density of each
fluid layer (see figure 1). Then the composite Froude number is given by

G2 = Fr2
1 + Fr2

2 − (1− r)Fr2
1Fr

2
2 , (2.2)

with r = ρ1/ρ2. Since a small density difference is assumed the last term in (2.2)
vanishes and the composite Froude number becomes

G2 = Fr2
1 + Fr2

2 . (2.3)

A value G2 > 1 represents supercritical conditions and the flow is subject to
upstream control. On the other hand, if G2 < 1, the flow is subcritical and subject to
downstream control. A supercritical flow is connected to subcritical conditions by a
hydraulic jump in the absence of a geometric control. Good reviews of the subject can
be found in Armi (1986), Farmer & Armi (1986), Armi & Farmer (1986), Lawrence
(1990), and Williams & Armi (1991).

2.1.1. Basic equations and extensions to the concept of hydraulic control

If critical flow conditions are caused by a contraction in either or both the lateral
and vertical directions, the flow is called hydraulically controlled. For all the exper-
iments discussed in what follows, the cross-section of the contraction is rectangular
and the shallowest and narrowest sections coincide, and the internal Froude number
is unity at that location.

For the cases considered here in which the density differences are caused by a
surface buoyancy flux (B0) the conservation of volume and buoyancy, are given by
(see Maxworthy 1997)

(1− α)u1 = −αu2, (2.4)

B0LW = αhg′u2, (2.5)

independent of the amount of mixing that occurs in the channel, where B0 is the
buoyancy flux, L is the length of the channel, W is the ratio between the width of
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Figure 1. Schematic view of the contraction region. (a) View of the contraction region from the
top. (b) Side view with complete flow isolation by two supercritical flow regions on either side of
the channel (limiting control (overmixed)). (c) Side view of the control region with separation of the
flow field only on one side of the contraction (basic hydraulic control ).

the basin, Wb, and the width of the sill, WS , in the narrowest part of the contraction,
h is the total fluid depth at the sill and y2 = αh the thickness of the lower fluid layer
at that location. Other quantities of interest are shown in figure 1.

With G2 = 1 and using (2.4) and (2.5) we obtain for the dimensionless buoyancy
difference (F), volume flux (Q) and kinetic energy (K)

g′h
(B0LW )2/3

=
1

α

(
1 +

α3

(1− α)3

)1/3

= F(α), (2.6)

u2αhWs

(B0L)1/3WBh
=

1

W 2/3F(α)
= Q(α;W ), (2.7)

u2
1 + u2

2

2(B0L)2/3
=
W 2/3E(α)

2F(α)
= K(α;W ), (2.8)

where E(α) = [1/α2 + 1/(1 − α)2]. Both functions E(α) and F(α) have minima, of 8
and 42/3 = 2.52 respectively, at α = 0.5, no matter how the contraction is formed, and
become infinite as α approaches 0 or 1. The minimum state is critical to the discussion
that follows since it represents the limiting condition on the flow that can occur at
the strait/sill location. We start the discussion of this state by evaluating equations
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(2.6) to (2.8) at α = 0.5 which give, for this limiting control condition,

g′ = (4B0LW )2/3/h, (2.9)

Q = 1/(4W )2/3, (2.10)

K = (4W 2)1/3, (2.11)

so that g′ and K are at a minimum and Q at a maximum independent of how much
mixing takes place in the channel.

Thus, as will be seen, for a hydraulically controlled two-layer flow through a
contraction two cases have to be considered. In the first the hydraulic control condition
is satisfied at the shallowest and narrowest section, but only on one side of the
contraction is the flow hydraulically separated from the flow in the contraction by a
supercritical flow region; see figure 1c). This case will be termed basic control. The
second case entails a control with supercritical flow regions on both sides of the
contraction. Due to these supercritical flow regions the flow through the sill does not
depend on the conditions in the two connecting reservoirs (figure 1b).

A variation of the latter case was first investigated by Stommel & Farmer (1953)
who studied the influence of a contraction on the amount of mixing that can occur in
an estuary. Here for the first time the expression overmixed was used for an exchange
flow through a strait marked by a minimum in the density difference between the fluid
layers, while the volumetric exchange of fluid through the strait was at a maximum
and its kinetic energy a minimum, independent of the reservoir conditions. Note that
this is identical to the state described by equations (2.9) to (2.11) in the present
case. Also, as mentioned above, in order for the flow to be in this state, the control
conditions in the strait region had to be such that no information concerning the
reservoir conditions could travel across the strait in either direction. This meant that
if, by some arbitrary mixing mechanism, the density difference in one of the reservoirs
could have been reduced to a very small value, or even disappeared completely, no
effect of this mixing would have been observed in the flow through the strait itself,
hence the use of the term overmixed. The major shortcoming of this term is that
it is used to descibe a flow state which is set, primarily, by a control at the strait
while the word itself suggests the importance of an effect which is actually secondary,
the amount of mixing in the reservoir. Since, in what follows, we use the term basic
control for a flow which is controlled at the strait, but not to the extend described
above, the term limiting control is used which more accurately conveys the concept
of the limiting control condition that is attained as α reaches a value of 1

2
. Further

discussion of these different flow states will be found in the following sections when
the results of our experiments are presented.

2.2. Scaling laws for the density differences in the main channel and control section

The earliest attempt to study the scaling relationships for density difference and
velocity in the main channel was contained in the seminal publication of Phillips
(1966). Subsequently this theory was refined by other authors, e.g. Garrett et al.
(1995) or Tragou & Garrett (1995). However all of these authors ignored the hydraulic
condition at the strait which resulted in some conclusions that appear to contradict
existing observations. It is required that vertical mixing be active over the whole depth
and length, and that the local Froude number be constant along the whole length of
the channel. The necessary hydraulic constraints were included in a unified approach
by Maxworthy (1994, 1997).
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2.2.1. The Phillips (1966) scaling

The approach by Phillips (1966) was to scale the density difference between the
upper and lower layers in a channel flow based on similarity arguments that resulted
in functional forms for the distributions of the flow properties like velocity and
buoyancy. These similarity functions for the velocity u and and g′ have the following
form:

usim = (B0x)1/3 f1

(y
z

)
, (2.12)

g′sim =
(B0x)2/3

z
f2

(y
z

)
, (2.13)

where the fi are universal non-dimensional functions describing the vertical profile
of usim and g′sim, and z is the local fluid depth. The important conclusion to be drawn
from these equations is that the horizontal velocity component, usim, of the flow at a
specific scaled height y/z is proportional to (B0x)1/3 and is independent of the depth
z. The density difference or g′sim is proportional to (B0x)2/3z−1 for a given scaled depth
y/z. The dependency of g′ on x, z and B0 is the same as in (2.6), with W = 1, if x is
replaced by the total length L of the channel and the local depth z by h, but clearly
neither the change in channel width nor the control state of the flow in the strait
was taken into account. If a local Richardson number is formed based on (2.12) and
(2.13) it is found that Ri = g′z u−2 = f2/f

2
1 = const.

2.2.2. The frictional approach of Maxworthy

In more recent publications Maxworthy (1994, 1997) has put forward a different
formulation. Here the hydraulic exit conditions were explicitly taken into account, as
will be discussed in the next section, while the body of the fluid in the main channel
was taken to be in buoyancy–friction balance as in Maxworthy & Monismith (1988).
The resulting scaling based on that balance can be expressed as follows:

g′Ma =K (B0L)2/3

H
(
L

H
)1/3

≡KB
2/3
0 L

H4/3
, (2.14)

where K is a proportionality factor, yet to be determined, which accounts for the
geometry of the channel and the hydraulic state in the strait, andH is the combined
thickness of the two moving fluid layers in the channel, which, in general, is not
the total depth H of the channel. Critically, the same scaling can be found using a
different argument. If we assume that no mixing takes place between the two layers, as
found experimentally, then a local buoyancy flux balance, similar to that of equation
(2.5), gives g′ ∼ x. The only possible combination of B0, h orH and x or L that gives
this result is equations (2.14) and (2.15). Note, the important difference compared
with Phillips’ (1966) (2.13) is the inclusion of the multiplying factor of (L/H)1/3. Due
to this factor g′Ma scales linearly with the longitudinal direction and the power of H
becomes −4/3.

2.2.3. Scaling based on hydraulic control in the strait

In the original formulation of the scaling law (2.14) the total length L of the
channel was used. Since in the context of this paper the buoyancy distribution along
the longitudinal axis of the channel is of interest, a function g′(x) is introduced, where
the local variable x is used instead of L. Furthermore from the experiments and also
from field data it was noted that H is usually of the order of h, meaning that only
a small amount of fluid from below the level of the sill crest is lifted up to exit over
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Figure 2. Example of a velocity profile in the contraction region. The 4 represent the profile
directly on top of the sill crest. The + represent a cross-section some 16 cm towards the closed end
of the channel. Almost no fluid motion is observed below y/h = 0.5. Note the drop of the interface
from inside the channel (βS ) (point A) to a lower position at the sill crest (α) (point B) (experimental
conditions: λ = 50, W = 1, B0 = 0.12 cm2 s−3).

the sill and through the contraction. An example of this effect in the experiments is
shown in figure 2. The velocity profile furthest from the sill crest (+) goes to zero
before it reaches the bottom of the channel and one can estimate that the effective
depth of this layer is of order −0.3h.

Therefore, when H is replaced by h, i.e. only true independent variables are used,
an equation of the following form is obtained:

g′(x) = k
(B0x)2/3

h

(x
h

)1/3

= k
B

2/3
0 x

h4/3
, (2.15)

where k is a proportionality factor. For the controlled state of the flow, equation (2.6)
must still hold while from equation (2.15) a value of g′(L) for the full length of the
channel can be derived. Equating these two expressions for g′ gives

F(α)
(B0LW )2/3

h
= k

B
2/3
0 L

h4/3
. (2.16)

This equation can be solved for k to give

k = F(α)W 2/3

(
h

L

)1/3

. (2.17)

Combining (2.15) and (2.17) results in a scaling function for g′(x) for a two-layer flow
over a sill and through a contraction, with a hydraulic constraint at the narrowest
and shallowest location of the following form:

g′(x) = F(α)W 2/3λ−1/3 B
2/3
0 x

h4/3
, (2.18)
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Figure 3. Photograph of the experimental setup.

where λ = L/h. Compared with the former scaling functions this latter one requires
the knowledge of an additional parameter, the non-dimensional interface depth α at
the sill. Later in the results section it is shown that (2.18) can be simplified further if
the control state (basic or limiting control (overmixed)) is known.

3. Experimental apparatus
The main part of the apparatus consisted of a long channel, 300 cm long, 20.5 cm

wide and 30 cm deep, made from Acrylic plastic. In order to simulate the buoyancy
flux due to evaporation, surface freezing or cooling, a saturated brine solution was
evenly applied, at a measured flow rate, to the surface of the upper layer through
porous buoyancy sources (figures 3 and 4). Fresh water was added at one side of
the tank, which will be called the ‘open end’ or ‘open reservoir’ in what follows. The
other, longer, side of the channel, which was covered by the buoyancy sources, was
closed, hence it will be called the ‘closed end’ or ‘closed channel’. The two ends of the
tank were separated by a region into which contractions and sills of various forms
could be placed. The open end of the channel simulated the open ocean. The closed
end represented a partially enclosed sea like the Red or Mediterranean Seas. The
contraction or sill region represents the strait between the open and the closed ends.

Two dependent variables, velocity and density, were measured. Velocity profiles
were mainly taken in the sill region using a DPIV method. Density profiles were
obtained by slowly sucking water from the channel using thin flexible tubes at various
locations and depths along its length. This fluid was passed through a conductivity
probe, where its conductivity, C , was measured continuously to an accuracy of 0.5%
(C < 20 000 µS) and 1% (C < 200 000 µS). A calibration function was used to
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Figure 4. Schematic view of the channel and the buoyancy sources.

translate the conductivity values into density with an accuracy of about ±0.00025
g cm−3.

The following subsections describe the different sections of the channel and the
methods by which the data were obtained. For a more detailed description of the
experimental setup see Grimm (1998). Figure 3 shows a photograph of the setup and
figure 4 a sketch.

3.1. The channel

3.1.1. The closed end and the buoyancy sources

As described above, the channel was divided into three different sections. The open
end, the sill or contraction region and the closed-end. The closed end had a variable
length (50–250 cm) and was completely covered by five buoyancy sources each 50 cm
long. The sources were individually controlled which allowed for time-dependent or
spatially varying buoyancy forcing. The frames of the buoyancy sources were built
from stainless steel with a fine screen at the bottom, which supported two layers of
filter paper with a thick, foam-like material in between. This allows the brine to be
distributed very evenly before it flows into the water underneath the sources. Brine
was supplied from an overflow basin through valves, flow meters and drip tubes that
eventually fed the sources (see figure 4).

3.1.2. The sill/contraction region

The sill and/or contraction region of the channel separated the open and the closed
end. Lateral and vertical (sill) contractions were inserted so that the narrowest and the
shallowest sections always coincided if they were used simultaneously. The contour
of each contraction was sinusoidal in shape, when used separately. However, in cases
where the lateral and vertical contractions were used together, the vertical contrac-
tion (sill) had a rectangular cross-section and was placed between the sinusoidally
shaped lateral contractions at their narrowest point. The resulting cross-section of
the contraction was always rectangular. A comparison of results for a sinusoidally
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shaped sill versus a rectangularly shaped one revealed no significant changes in the
flow field with respect to the maximum density difference and the velocity field in
the contraction region. Using a rectangular bar rather than a more gently varying
sinusoidally shaped sill conflicts with the assumption that pressure is hydrostatic
everywhere in the flow. However, it was also shown by Henderson (1966, p. 42) that
deviations caused by violating this requirement are usually small.

3.1.3. The open end

The open end contained the fresh water source and an overflow tube or weir to
maintain the total depth of the water, H , in the channel. An additional outlet was
placed in the bottom of the open section to remove the dense bottom water more
effectively. The fresh water source was fed by tap water. The source itself consisted
of a box with one side open towards the closed end. The incoming fresh water was
calmed by a layer of thick foam-like material before it entered the channel. The
supply of fresh water was always kept slightly higher than the actual amount of
water flowing through the sill region into the closed end in order to prevent remixing
of the dense bottom water with the fresh inflow.

3.2. Data collection

3.2.1. Buoyancy flux and density profiles

In the present experiment the buoyancy flux, which was applied to the surface,
depended both on the volume flow rate and the density of the brine given to the
sources. The flow rate VSit

−1 [cm3 s−1] for each source was determined by measuring
the volume of the brine, VSi , during a certain time period t. This flow rate then was
associated with a particular setting on the scale of the flow meter. This setting was
kept constant throughout any one experiment to an accuracy of ±2%. The density
of the brine (ρS ) was measured using a 100 ml specific gravity bottle. The buoyancy
flux B0 was then determined by

B0 =

∑
VSi g(ρS − ρ0)∑

Aitρ0

, (3.1)

where ρS and ρ0 are the densities of the brine and the incoming fresh water respectively
and Ai is the area covered by one buoyancy source. Density profiles were measured
along the channel at various locations and at different depths. A thin tube with
holes on opposite sides sucked water from a specified depth through a conductivity
probe. By measuring the temperature also a conductivity value corresponding to 25◦C
was calculated. For the conductivity measurements a device called a SCTpH meter,
manufactured by LabComp was used. A computer program was written to relay
the data from the SCTpH meter to a Personal Computer where time and location
information was added and stored with each sample. Using the calibration function
the conductivity data were transformed into density data.

3.3. Digital particle image velocimetry (DPIV)

Besides density data, velocity profiles were acquired using a DPIV system. The fluid
was seeded with small neutrally buoyant Plyolite particles and these were imaged using
a PULNiX TM-9701 CCD-camera. Since a two-dimensional flow is assumed the flow
field can be evaluated by using a thin light sheet to illuminate the particles in a vertical
plane along the centre of the channel. Images were collected in pairs or quadruples
at known time intervals. The image data were digitized using a digitizing board,
DT3155, manufactured by Data Translation. The acquisition process was controlled
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Figure 5. Example of the temporal development of the density of the bottom layer after starting
the experiment at t0 = 0 s, until the flow reaches steady state (experimental conditions: W = 4.1,
λ = 57, L = 250 cm, h = 4.4 cm, H = 10 cm, B0 = 0.32 cm2 s−3).

by a program especially written and designed for these experiments. The algorithm
that was used to evaluate the image data was based on a software development
by Fincham & Spedding (1997). Due to the wide range of velocities in any one
experiment it was necessary to modify this code by acquiring four images at different
time intervals and then, depending on the local fluid velocities, the inner pair of the
image quadruple or the outer pair was used to calculate the local flow field. When
strong density differences between the inflow and the outflow through the strait region
were expected particles of slightly different densities were used simultaneously.

From the density and the velocity data in the sill region a local Froude number was
calculated to verify that hydraulic control was established in the contraction region
and to identify the location of the supercritical and subcritical regions.

3.4. Experimental procedure

For each experiment the whole channel was filled with fresh water to the desired total
depth, H . A density probe was placed 1 cm above the bottom near the contraction
section, in the closed end of the channel. At time t = 0 the buoyancy sources and the
fresh water source were turned on. Soon after, a two-layer flow started to develop
with inflowing water at the top and outflowing water at the bottom. A steady flow
was assumed to exist after there were no significant changes in the density of the
bottom layer, for 5 to 10 minutes. Throughout this initial phase of the experiment
density data were recorded every minute. It was found that the initial phase lasted at
least 60 min. In some cases it could take as long as 100 min, even for a channel as
short as 100 cm (see figure 5).

After reaching a steady state density profiles were taken along the channel at
intervals of 50 cm. For each profile a series of four to five measurements was
conducted at each depth which translated into an averaging time of about 5 min. The
spacing in the vertical direction was as small as 1 mm in the proximity of the interface
between the upper and lower fluid layers. An example of the density profiles along
the channel is shown in figure 6. From these density profiles local values of g′ as well
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Figure 6. Example of the density profiles along the channel (experimental conditions: W = 1,
λ = 50, L = 250 cm, h = 5 cm, H = 10 cm, B0 = 0.24 cm2 s−3). The density profile at the sill crest is
not shown.

as α, β and βS were deduced. Here β = Y2H
−1 is the non-dimensionalized interface

depth inside the closed end of the channel with respect to the total depth H , and
βS = (Y2 − s)h−1 is the interface depth in the closed end of the channel with respect
to the depth h at the sill (see figure 1). The ratio α/βS is called the drop ratio of the
interface from the level in the closed end of the channel to the level at the sill crest
made dimensionless by the sill depth h.

After taking the density profiles the velocity profiles were taken in the contraction
region. Ten to fifteen groups of image pairs or quadruples were taken about 1 min
apart. The flow field was obtained by averaging over the whole time series of images.
Velocity profiles were then calculated vertically across the image plane. From the
velocity profiles the dimensionless depth, α, of the interface in the contraction region
was calculated, based on the velocity profiles. A comparison between the values of α
obtained from the velocity profiles and the density profiles show good agreement.

4. Results and discussion
4.1. Experimental results

In this section the results of the experiments are discussed. Based on these results
the findings will then be applied to a number of natural flow systems. First evidence
is sought from the experiments to confirm the basic proportionalities for the scaling
of g′(x). Thereafter the scaling is applied to the experimental results without dis-
criminating between the specific control state. Following that, a closer look is taken
at the specific control state and the resulting scaling function. For all the reported
experiments hydraulic control, i.e. G2 = 1, was established in the contraction/sill area.

The derivations for the scaling of the density difference between the inflowing and
the outflowing fluid layers, given by (2.13), (2.14) and (2.18), do not show a difference
due to the buoyancy flux B0. However they do show a difference in the exponents
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Figure 7. Scaling with x/L: L = 250 cm, h = 5 cm, H = 10 cm. The regression coefficient has a
value of m = 1.1± 0.05 which is indicated by the solid line.

of the longitudinal direction x and the depth h. Since the scaling g′(x) ∝ B
2/3
0 must

be correct by dimensional arguments as has already been shown by different authors
(Phillips 1966; Møller 1984; Brocard et al. 1977; and Maxworthy 1994, 1997) we look
only at the scaling of g′(x) with x and h in detail.

4.1.1. Scaling with x

Figure 7 shows a compilation of experiments with a channel length of L = 250 cm
and h = 5 cm (λ = 50). The ordinate shows the logarithm of the experimentally
measured g′ normalized by h4/3(B

2/3
0 L)−1, while the abscissa is log(x/L). A linear

regression analysis reveals a slope of m = 1.1 ± 0.05 which is almost linear and
substantially different from the value of 2

3
suggested by the Phillips (1966) scaling.

This finding strongly supports the buoyancy/friction/non-mixing approach of Max-
worthy (1997) and the equation (2.18) derived from there.

For all the experiments it should be noted that the density of the bottom layer
is constant along the whole length of the channel. Only the density of the top layer
increases as fluid parcels move from the strait to the closed end. The observed linear
dependence of g′ on x, shown in figure 7, confirms the earlier suggestion that there is
negligible mixing between the two fluid layers over most of the length of the channel.
Only near the closed end of the channel, i.e. over about a distance of the order of H
or approximately 5% of the total length, does mixing and overturning occur when a
local Richardson number of order unity is reached.

4.1.2. Scaling with h

In this subsection we consider the dependence of g′(x) on the depth, h, of the
water above the sill crest. Figure 8 shows a set of experiments with a channel length
of L = 250 cm. The value of h ranges from 2.8 cm to 10.8 cm (23 6 λ 6 89). Also
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included are three experiments by Møller (1984). The ordinate shows the logarithm
of g′ divided by (xB0)

2/3 where the abscissa shows log h. The value of g′ used for
this plot was taken at a location x = 150 cm to avoid effects due to the overturning
at the end of the channel which might affect the derivation of the power of h. All
these experiments are considered to be of the basic control type. A linear regression
analysis yields a regression coefficient of m = −1.3± 0.06. This again is close to what
is expected (− 4

3
) from the combined friction–hydraulic scaling law.

Based on these findings, a scaling law for g′(x) of the following form is thought to
be appropriate:

g′(x) ∝ B
2/3
0 x

h4/3
. (4.1)

4.2. Hydraulic control states

In figure 9 we show g′ scaled according to the result shown in equation (2.18), i.e.

g′(x) = F(α) W 2/3λ−1/3B
2/3
0 x/h4/3 as a function of x/L, for all experiments which

were conducted during the course of this work. The length to height ratio covers a
range 6.7 < λ < 125, the width ratio varies between 1 6 W 6 8.2. It can be seen
clearly that the scaling linear in x works well for all data. Furthermore note that
the experiments in the basic control state (�) tend to be slightly above the limiting
control (overmixed) experiments (+). Since other authors did not state the interface
depth α in their works, no comparisons can be made on this point.

The type of the flow control can be determined by the interface depth, α, which is
constant (α = 0.5) for the limiting control (overmixed) state and variable (α < 0.5) for
basic control. Figure 10 shows how k depends on α and thus on the type of the flow
control. The ordinate shows the value of k evaluated using equation (2.17), which,
it will be remembered, was derived from the combination of the internal buoyancy–
friction balance and the assumption of a hydraulically controlled flow through the
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Figure 10. The value of k, from equation (2.18), for all experiments under both basic and limiting
(overmixed) control, versus α.

contraction. The graph shows that for values of α < 0.45, the proportionality factor is
constant with k ≈ 1 representing basic control. When α ≈ 0.5, k becomes independent
of α representing the limiting control (overmixed) state with a proportionality factor
k = 2.52W 2/3λ−1/3 (i.e. equation (2.17) evaluated using F(α = 0.5) = 2.52). This
plot shows the significance of the assumption of a hydraulic control condition in
the contraction and the necessity to distinguish between the two possible control
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Figure 11. Example of the increase in the interface depth, α, from 0.27 to 0.4 when W increases from
1 to 2.1 for a flow in the basic control state. The other applicable parameters for both experiments
are: λ = 50, L = 250 cm, h = 5 cm, H = 10 cm, B0 = 0.12 cm2 s−3).

conditions, i.e. basic control and limiting control (overmixed), in order to further
investigate the flow.

Also note that, once k is known, the value of F(α) can be derived from the geometry
of the channel by solving (2.17) for F(α):

F(α) = kλ1/3W−2/3. (4.2)

Of course this equation is true only as long as its right-hand side is equal to or above
the minimum value of F(α), i.e. for the basic control state. However, if the geometry
is such that its right-hand side drops to or below the minimum value of F(α), i.e.
2.52, the flow is in the limiting control (overmixed) state and equation (4.2) can be
used to determine the critical ratio λ or W , if one of them is fixed, for which the
flow reaches the limiting control state. These results show that (2.18) can be used to
easily calculate the density difference, or g′(x), if the control state is known. There is
a small transition region for 0.45 < α < 0.5 which is due to the difficulty of exactly
determining the interface depth when a rectangularly shaped sill is used. There might
also be a slight indeterminacy between the two control states close to the transition
between the two states.

The following two subsections are devoted to a more thorough investigation of
each of the two flow states basic and limiting control.

4.2.1. Basic control conditions

Basic hydraulic control is always achieved with a sill of sufficient height in the
contraction area, i.e. when the overflow is isolated from the main basin. For all
the reported experiments this requirement was met with a height above the sill
h 6 5 cm (figure 1b). The lower layer beyond the sill in the exit accelerates so
that the flow becomes supercritical (G2 > 1). On the other side of the contraction
region no supercritical flow conditions exist (G2 < 1) and the flow within the closed
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end of the channel is not hydraulically separated from the flow condition in the
contraction (figure 1c). This feedback between the contraction and the closed end of
the channel accounts for k being constant for the basic control case. Depending on
the channel geometry W , λ and the buoyancy B0 applied to the surface area, α adjusts
accordingly. This means using (2.17): as W increases, for example, F(α) must decrease
and α approaches 1

2
. Using results from the present experiments this effect is revealed

in the two velocity profiles of figure 11 where, for otherwise identical conditions, as
W increases α increases also.

Figure 12 shows g′ made dimensionless by B
2/3
0 L/h4/3 for all experiments performed

under basic control conditions including different lateral contraction ratios 1 6W 6 2
and different values of λ. Besides our experiments the results of Møller (1984) and
Brocard et al. (1977) are included. The figure clearly indicates that there is no
difference in the scaling law for g′(x) for different values of W or λ. In order not
to complicate the figure, the individual values of λ are not indicated separately but
they are, in fact, different for each value of W . A linear regression analysis yields a
coefficient of m = 1.04 ± 0.04 and is represented by the solid line. The final scaling
function for basic control thus takes the form

g′bc(x) = (1.04± 0.04)
B

2/3
0 x

h4/3
. (4.3)

For all experiments with basic control the drop ratio, α/βS , of the interface from the
closed end of the channel to the interface depth over the sill crest is 0.64 < α/βS < 0.72
which is close to 2

3
. This is the same as the theoretical value found for the drop ratio

for single-layer flow over a weir, assuming energy conservation (see Henderson 1966).
Therefore the basic control case can be viewed as a two-layer flow with the lower
layer as the active layer, i.e. with Fr2

1 � Fr2
2. Figure 13 shows an example of the
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Figure 13. An example of the development of the individual Fri and the composite Froude number
G, for an experiment in the proximity of the sill crest (experimental conditions: λ = 50, W = 1,
B0 = 0.12 cm2 s−3, L = 250 cm, h = 5 cm, H = 10 cm). The position of the sill crest is depicted by
the vertical line. The dip in the data across the sill crest is caused by the bar-shaped sill which was
used in this experiment. On the horizontal axis a local, arbitrary variable χ is used.

development of the individual Fri and G in the proximity of the sill crest which shows
that the flow is clearly dominated by the lower fluid layer.

Only for low values of λ (i.e. λ < 20) does the scaling function show deviations
from the suggested scaling, (4.3), with values of k higher than 1.04. This is presumably
due to the fact that mixing, in the end region, takes place over a substantial fraction
of the channel length in these cases.

For comparison the same data as in figure 12 are shown again in figure 14 based
on the Phillips (1966) similarity approach. A linear regression analysis of the data
in this case gives a coefficient of m = 4.1 which is represented by the solid line in
the figure. The line intercepts the x-axis at a value some 17% from the closed end
of the channel where the density difference between the two layers according to this
model should became zero. This was clearly not observed either in the experiments
presented here or in experiments conducted by Møller (1984).

4.2.2. Limiting control (overmixed) flow conditions

Increasing the width ratio, W , and/or the aspect ratio, λ, eventually established a
flow under limiting control, i.e. α = 0.5. The flow in this case had reached a maximum
exchange rate through the contraction. Figure 15 shows the results for the experiments
which were conducted in this state. Besides experiments with a sill (solid symbols),
those with no sill and a lateral contraction only (open symbols) were conducted. This
time a value of k = 2.52W 2/3λ−1/3 was used, which was found to be appropriate for
these cases.

A linear regression analysis of the data plotted as g′h/2.52(WLB0)
2/3 vs. x/L gives

a coefficient of m = 1.04± 0.05, which, interestingly, is the same as the value found in
the basic control case. Using this corrected value, the final scaling law for the limiting
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control (overmixed) cases reads

g′lc(x) = 2.62W 2/3

(
h

L

)1/3
B

2/3
0 x

h4/3
. (4.4)

The line representing the results of the regression analyses intercepts the abscissa
at x/L ≈ 0.1, where the density difference between the two layers vanishes. This
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finding is consistent with the experimental observations that the mixing region at
the closed end of the channel for the limiting control (overmixed) cases ranges over
approximately 0 < x < 0.1L. No substantial mixing occurs along the rest of the
channel. Thus, the general behaviour of the flow is not changed compared with the
basic control case. The slightly longer mixing region at the closed end of the channel
accounts for the tendency of the limiting control (overmixed) data to be little lower
in figure 9 while the slope is the same in both cases. The scaling law (4.4) for the
limiting control (overmixed) case should thus include a small constant of about −0.08
with the dimensions of g′, or an offset, x0, of the order of the length of the mixing
region. In order to keep the equations as simple as possible, we have not included
that correction.

4.2.3. Summary of experimental results

Two different conditions of the flow through a contraction region linking fluid
reservoirs of different densities have been investigated – basic and limiting control. A
scaling law, linear in x, was found to be appropriate to predict the development of
the density difference between the two fluid layers along the channel:

g′(x) = k
B

2/3
0 x

h4/3
. (4.5)

A value of k = F(α)W 2/3λ−1/3 was found based on a buoyancy–friction–hydraulic
control balance as given in (2.16). The experiments have shown that for the basic
control state, due to the feedback between the contraction region and the flow inside
the closed end of the channel, k is a constant, with the dynamic property, F(α),
adjusting to the geometric conditions. However, if the flow is in the limiting control
(overmixed) state this feedback no longer exists and k now depends on the geometric
quantities W and λ, while the dynamic part of k, F(α), is constant. Based on the flow
conditions and the geometry of the contraction two different expressions for k have
been found:
kbc = 1.04± 0.04 for basic control (0.5 > α > 0),
klc = (2.62± 0.05)W 2/3λ−1/3 for limiting control (α ≈ 0.5).

4.3. Applications to natural flow systems

When natural systems, of the type of interest here, are investigated numerous factors
which are not subject to the control of the experimentalist have to be considered.
Measurements often represent only snapshots of the whole process or are restricted
to a few locations. Estimates of evaporation rates or fluid transport often vary by
a factor of two. However, compiling all available information can still give a good
framework for the application of experimental results to natural systems.

Two different natural systems have been investigated, the Red and the Mediter-
ranean Seas. Of all of the natural systems the Red Sea is probably the one which is best
known and most closely fits the experimental design. Its topography and bathymetry
are rather simple and the sea–air interface has more or less uniform features for most
of the seasonal cycle with regard to wind stress, heating, cooling and net evaporation.
The Mediterranean Sea by contrast represents a very inhomogeneous system.

Despite these differences the type of the hydraulic control is determined and the
appropriate scaling function applied to both systems.



Buoyancy-driven mean flow in a long channel 175

10.0

100
x (km)

1.0

1000

g«

0.1

Phillips
Speer

Figure 16. The raw data sets of Phillips (1966) and K. Speer (personal communication) for the
Red Sea. The solid line represents a linear scaling with x. The dashed line represents a scaling with
an exponent of 2/3 in x.

4.3.1. The Red Sea

The Red Sea is a natural system which has the closest similarity to the channel of
the experiment. Its total length is L ≈ 1960 km with an average depth and width of
560 m and 200 km respectively. The depth and width of the strait (Bab el Mandab)
are 120 m and 20 km respectively. Thus the width ratio is W ≈ 10. The surface area
is estimated to be 460× 103 km2. Based on measurements by K. Speer and F. Schott
(personal communications) the maximum density difference between the fluid layers
of the Red Sea in the exit region is g′ = 4.6 cm s−2 and the buoyancy forcing B0

is variously quoted as 2.0 × 10−4 cm2 s−3 by Garrett et al. (1995), 3.4 × 10−4 cm2 s−3

by Grimm (1998), 3.8× 10−4 cm2 s−3 by Maxworthy (1997) and 4.4× 10−4 cm2 s−3 by
Phillips (1966). Here we will use the value of 3.4×10−4 cm2 s−3. The type of flow found
at Bab el Mandab is one of basic control. Hydraulic control is established by the
pronounced sill and the extensive downsloping of the sea floor towards the Arabian
Sea basin, past the Strait. The interface height above the sill crest gives α ≈ 0.26
(Maxworthy 1997), well within the requirement for the basic control condition. Here
x is measured from the southern tip of the Sinai peninsula. No substantial river
run-off or precipitation exists within the Red Sea basin.

As a first attempt at data reduction, using values of g′(L), L, h, and B0 given
above, the proportionality constant k, evaluated at the exit from (2.15), is 1.26. This
is very close to, within 20%, the value of 1.04 found in the experiments. Using the
Phillips (1966) scaling the value becomes 34.3, which is much larger than that found
experimentally.

Secondly, if we look at the details of the longitudinal distribution of g′ as represented
by the K. Speer (personal communication) data in figure 16 (+, January–March
flow), a regression coefficient is found of m = 0.83. This value is less than a linear
development of the density difference between the two fluid layers. Compared with
the experiments additional effects have to be considered. Most important are the
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0.4L < x < L: B0i = 0.13 cm2 s−3). The solid line represents a scaling with an exponent of 0.75 with
x (experimental conditions: L = 250, h = 5 cm, H = 10 cm.)

effects of steady winds blowing along the length of the Red Sea. Throughout most
of the year the prevailing winds are from the NNW, opposing the flow direction
of the upper fluid layer and thus tending to slow it. Only during the winter do the
winds blow in the opposite direction, and therefore with the flow, in the southern
part of the Red Sea (Maillard & Soliman 1986). Since the data by K. Speer (personal
communication) were acquired during the winter, winds were blowing in the direction
of the upper fluid layer in the southern part of the Red Sea while in the North the
flow is slowed by opposing surface winds.

The data by Neumann & McGill (1961), used by Phillips (1966), were gathered in
early summer. During that time the winds typically blew against the flow direction of
the upper fluid layer over the whole surface, accounting for even stronger effects on
the resulting flow pattern. Even a three-layer type of flow can occur during summer.
Here an upper layer driven by the wind stress with a thickness of about 20–40 m,
forms on top with a southerly flow direction, while the inflow from the Arabian Sea
takes place in the intermediate layer. The regression coefficient for this data set is
m = 0.59 with a large non-zero buoyancy jump, at x = 0 (figure 18). This value of the
slope is close to the value of 2

3
used by Phillips (1966) to support his scaling function

(2.13).
From the experiments and observations discussed above and the remarks on the

specific conditions in the Red Sea area, one concludes that the scaling by Phillips
(1966) is unlikely to apply for various reasons. First it requires strong vertical mixing
over the whole depth of the upper two (three) fluid layers. From our experiments we
can find no reason that thorough mixing is possible at the large Richardson numbers
that prevail in both the natural and the laboratory systems. However, results from
an experiment with a spatially varying buoyancy forcing, B0(x), show that the overall
scaling, g′(L), still applies when the mean value of B0 is employed, even if the local
distribution of g′ along the channel is not linear (figure 17). The exponent of x for
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Figure 18. Data sets by Phillips and Speer for the Red Sea scaled according to equation (2.18)
i.e. assuming basic control.

the case shown is 0.75. Therefore a nonlinearity of g′(x) for the Red Sea can be
attributed to other effects than mixing between the layers, i.e. extra cooling or higher
evaporation rates in the northern part of the sea, as well as longitudinal variations
in the wind stress. Also note that as soon as the strong wind stress, over the whole
length of the Red Sea in summer relaxes to the winter pattern, the exponent of x
shifts closer to unity.

As a result it is useful to derive the proportionality factor, k, for the Red Sea,
for both data sets and compare the resulting values for the Phillips (1966) and the
frictional approach with the experimental results. Figure 18 shows the Red Sea data
plotted the same way as the experimental data for the basic control conditions of
figure 12. From this plot the factor k can be computed for both data sets. Values
of k = 1.14 and 1.23 are found for the data sets by Neumann & McGill (1961) and
K. Speer (personal communication) respectively. The values are fairly close to the
value which is to be expected for a ‘clean’, non-mixing two-layer flow. Despite the
fact that complicating effects do occur in the Red Sea, the hydraulic constraint at the
sill governs the scaling of g′ according to equation (4.3) and the results compare well
with the experiments.

On the other hand, using the similarity approach of Phillips (1966) to scale the
density difference a value of k ≈ 37 is obtained which is some 10 times higher than
the value found from the experiments (see figure 14).

4.3.2. The Mediterranean Sea

The other natural system to be considered is the Mediterranean Sea. The very
narrow and shallow Strait of Gibraltar separates it from the Atlantic Ocean.
The narrowest section (Tarifa section) is only 12 km wide and the shallowest sec-
tion (Camarinal Sill) has a maximum depth of 350 m. The cross-section is almost
a triangular shape for which an effective or equivalent rectangular sill depth of
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h = 200 m is assumed (see below). The total length of the Mediterranean is
L = 3750 km with a surface area of 2.5 × 1012 m2 which gives an average width
(Wb) of 670 km. The width ratio is then W = 56. Based on measurements by Farmer
& Armi (1988) g′(L) = 2.5 cm s−2 and B0 = 1.6 × 10−4cm2 s−3. There is an ongoing
debate as to whether the Mediterranean Sea is under limiting control (overmixed),
or not. Due to the pronounced sill the Mediterranean Sea clearly is hydraulically
controlled and complex hydraulic flows have been observed (Farmer & Armi 1988).
Garrett, Bormans & Thompson (1990) suggest that the Mediterranean is under lim-
iting control (overmixed) during the first half of the year and under basic control for
the second half of the year.

Due to strong barotropic tidal forcing the hydraulic flow at the Strait of Gibraltar is
never steady. However one can treat the region as a ‘black box’ which generates some
average condition within the partially enclosed sea, i.e. all the nonlinear exchange
effects can be averaged out to give an effective control condition at the strait. Of
course this is only possible since the time constant for a change in the sea is so
long that it cannot respond instantaneously to the changes in the control condition
and because the internal waves that carry information about the control attenuate
rapidly as they leave the region of the strait. For this averaged condition based on
the parameter values given above, a value of k = 1.23 is calculated from (2.15).
Assuming basic control conditions, this value should read 1.04. Based on limiting
control conditions a value of k = 1.39 is predicted from (4.4). Thus the value
calculated from the field measurements lies between the predictions for the two
different averaged control conditions 1.04 < k < 1.39 both of which seem to occur
over the period of a year. The assumption of an effective depth of h = 200 m comes
from the thought that it is appropriate to keep the actual triangular cross-sectional
area of the strait the same as the effective cross-section of an equivalent rectangular
shape, though no experiments seem to exist to verify this assumption. Altering h
between 175 6 h 6 225 m shifts k closer to either the basic control or the limiting
control (overmixed) condition. This finding again supports the contention that the
overall scaling of g′(L) depends mainly on the control state of the flow at the
sill.

4.3.3. Summary for natural systems

Two different natural systems have been investigated. It has been shown that the
different flow types investigated in the experiments can be applied to them. In order
to apply a scaling model it is necessary to know exactly the exit flow condition that
is appropriate for the specific system.

For the Mediterranean Sea the predicted values of k, from the field measurements,
are very close to those from the experiments and between the two states that are
thought to exist for the Mediterranean Sea over the annual cycle. Even though this
system is very inhomogeneous, interestingly the effective control condition is very
close to that found in the experimental system.

For the Red Sea extraneous effects seem to disturb the system to an extent that
the application of the experimental results is not straightforward and additional
experiments need to be conducted to fully understand the buoyancy distribution in
this system. However the application of the experimental results to the Red Sea is
already very good in an averaged sense, when one thinks of the possible effects of
wind stress and non-uniform buoyancy flux to the upper fluid layer, for example. The
values of k (1.14 and 1.23), calculated from the observations, deviate less than 20%
from the value predicted from our experimental results.
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4.4. Summary

It has been shown that a function that is linear in x scales the development of the
density difference in exchange flows through straits connected to convectively driven
seas. This function can be obtained by a friction–buoyancy balance in the main body
of fluid in a long channel, for example. Application of an hydraulic control condition
at a strait or contraction region poses a further constraint on the exchange flow.
This constraint can then be used to derive a scaling factor k that depends upon the
geometrical aspect ratios of the channel (W and λ) and the dynamic properties of the
hydraulic flow at the sill/contraction as represented by the function F(α). By using
knowledge of the specific control state of the flow, i.e. whether it is under limiting or
basic control the value of k can be determined easily.

Comparisons with natural systems have yielded promising results. However it is
still necessary to work towards a better understanding of the effects on buoyancy
distribution caused by wind stress, complex topography and spatially and temporally
non-uniform buoyancy forcing. Experiments need to be conducted to see how details
of the strait geometry influence the effective interface height at the strait and how the
overall control at a strait is effected when the shallowest and narrowest section do
not coincide, etc. Other interesting aspects concern the effect of local sources of dense
water connected to the main channel, e.g. the Gulf of Suez or the Gulf of Aquaba in
the case of the Red Sea. Finally, work needs to be done in an apparatus which allows
higher contraction ratios, W , than were used during this work to model even more
closely the Red Sea (W ≈ 10) and the Mediterranean Sea (W ≈ 56).

We would like to acknowledge the German Academic Exchange Service for sup-
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